
A 3D Tennis Complete Analysis

Omid Daliran∗1, Amirreza Azari∗2, Reza Heidari∗3, Parham Rezaei∗4, Payam Taebi∗5

1 400104931, 2 99101087,3 400109616,4 400108547,5 400104867
1 hopebraves@gmail.com, 2 amirrezaazari1381@gmail.com,3 r4heidari@gmail.com

4 parhamix@gmail.com,5 xpayamtaebix@gmail.com

Keywords: 3D Computer Vision - Tennis - Motion Detection - Keypoint Extraction - Homography - Multiview Reconstruction -
Deep Learning - Image Processing - RANSAC

Abstract

This project presents a comprehensive 3D analysis of tennis. Due to the recent advancements in computer vision methodologies,
the contemporary landscape of sports analytics witnesses an increasing reliance on automated frameworks empowered by computer
vision for robust data extraction. In the specific context of tennis, our investigation centers on the detection of players, ball trajectory
tracking in singular or multiple perspectives, homography and the establishment of a general 3D comprehension of the court along
with a framework to classify player poses. These components collectively serve as foundational pillars for the development of a
reliable system designed for fault detection and precise reporting of game statistics. Our methodology integrates well-established
computer vision techniques with novel concepts in a 3D analysis framework for the game of tennis. This project aims to combine
conventional methods in computer vision with state-of-the-art deep learning networks to create a reliable framework for 3D tennis
analysis.

1. Ball Tracking

1.1 Introduction

Detecting a tennis ball during matches presents considerable
challenges. The complexity primarily arises from two aspects:
the high velocity of the ball, which often renders it as a blur
rather than a distinct spherical shape in video frames, and the
potential for occlusion by various elements within the scene,
such as players or the net. This problems guides us toward us-
ing different methods such as classic and deep learning mod-
els in order to properly detect the ball. Successfully addressing
this problem offers numerous benefits, such as enabling detailed
analytics including ball speed, and supporting ball-based ana-
lysis, for instance, counting net hits. Additionally, it plays a
crucial role in our Enhanced Tennis Broadcast (ETB) method.

Figure 1. last frame Figure 2. ball detected

Figure 3. trajectory detected Figure 4. index colored

* These authors contributed equally to this work

1.2 Related Work

Historically, there have been both classical and deep learning-
based approaches to this task. The method developed by (Fazio
et al., 2018) for ball trajectory estimation in tennis employs ste-
reo smartphone videos. They utilized a combination of image
segmentation, morphological processing, and multiple-view geo-
metry. By determining point correspondences and calculating
camera positions relative to a fixed origin, they were able to
accurately estimate the ball’s position using state estimation fil-
tering. This detailed approach, capitalizing on accessible smart-
phone technology, highlights their innovative technique for tra-
jectory analysis in a sports setting.

In addition, (Qazi et al., 2015) developed an automated ball
tracking system for tennis videos, utilizing machine learning
and multiple image processing techniques. Their approach in-
volved video stabilization, random forest segmentation, and the
application of saliency features to accurately detect and track
the tennis ball in match videos captured by quadcopter-mounted
cameras. Despite achieving a notable accuracy of 94%, their
system only could handle partial occlusions.

In contrast, the deep learning approach, notably the methodo-
logy outlined in the well-known paper by (Huang et al., 2019),
leverages a convolutional and upsampling U-Net structure to
estimate the ball’s position. Our approach aligns with this mod-
ern trend. There are projects done using this model, but due to
the lack of official code they mostly used only the last frame in
order to decide.

1.3 Method

TrackNet (Huang et al., 2019) , employing a convolutional neural
network (CNN), accurately predicts a tennis ball’s position in
videos. It processes three sequential frames, each 640x360 in
size, to produce a heatmap indicating the ball’s likely location.
This process leverages an encoder-decoder network to generate



the heatmap, followed by a Hough transform to identify the ball
as a circle on the heatmap. The CNN was trained on a dataset
compiled from YouTube tennis matches, using a mix of manual
and automated labeling techniques. By using the best model
proposed in the paper we should be able to achieve up to 99.7%
accuracy in ball position prediction. The architecture is illus-
trated in figure 5.

Figure 5. Ball Detection Model Architecture

1.4 Challenges

To address the occlusion problem, we have used beyond what
has been used in projects which rely on only the most recent
frame. The model inputs the last three frames to estimate the
ball’s position in the current frame, significantly enhancing the
accuracy of ball tracking, as evidenced by human comparative
analysis. However, this method still encounters limitations in
scenarios of continuous occlusion. To overcome this, we have
developed two novel approaches.
1. Interpolation: we utilize the last visible points to linearly
estimate the ball’s position in the current frame, effectively re-
ducing the incidence of non-values in the model’s output. While
this method shows improvement, it is not remarkably superior
in cases of heavy occlusion.

Figure 6. linearity in consecutive frames

2. Multi View Correspondence: our second method employs
multi-view 3D knowledge of epipolar lines to estimate the ball’s
position in the current view. Utilizing two additional cameras,
commonly present in major tennis matches, we can determine
a more realistic position of the ball from our primary camera’s
perspective. This is achieved by estimating the ball’s position
in the auxiliary views using the model, and then applying the
intersection of epipolar lines in the primary view for a more
accurate estimation. For a sample of the result see Figures 7-
10.

2. Efficient Tennis Broadcast (ETB)

2.1 Introduction

The Efficient Tennis Broadcast (ETB) project introduces an in-
novative approach to broadcasting tennis matches, particularly
beneficial under limited internet bandwidth conditions. Tradi-
tional broadcasting methods often compromise video quality
due to bandwidth constraints. ETB addresses this by imple-
menting a novel broadcasting technique that focuses on the key
elements of a tennis match - the players and the ball.

2.2 Method

ETB uses a fixed background image as the base layer of the
broadcast. During a match, instead of streaming the entire video
frame, ETB dynamically updates and transmits only specific re-
gions: boxes surrounding the players and the ball. This method
significantly reduces the amount of data required for transmis-
sion. Our human-centric experiments revealed that viewers of-
ten do not notice the static nature of the environment, as their
focus remains primarily on the players and the ball. This insight
is pivotal to the effectiveness of ETB.

Figure 11. Resolution Loss (1/8 of pixels transmitted)

The implementation of ETB involves real-time detection and
tracking of players and the ball, which are then encapsulated
in bounding boxes. These boxes are periodically updated on
the fixed background, ensuring that viewers receive the most
critical visual information. This technique not only conserves
bandwidth but also maintains a level of visual quality and con-
tinuity in the broadcast.

Figure 12. ETB output (1/8 of pixels transmitted)



Figure 7. unknown ball Figure 8. ball from left view

Figure 9. ball from right view Figure 10. ball estimation

2.3 Further Insights

For a more comprehensive understanding and visual represent-
ation of the ETB method, interested readers are encouraged
to visit our GitHub repository, where a demonstrative video is
available. This video showcases the practical application and
effectiveness of ETB in real-world scenarios.

This section outlines the key aspects of the Efficient Tennis
Broadcast method, detailing both its innovative approach and
practical implementation. The invitation to visit the GitHub re-
pository offers additional resources for readers seeking a deeper
understanding or visual demonstration of the system.

3. Player Detection and Tracking

3.1 Method

Our approach to player tracking incorporates a sophisticated fu-
sion of techniques, beginning with the utilization of MOG back-
ground removal methods to initiate the detection of player mo-
tion. Initially, we employ MOG2 background subtractor to de-
lineate foreground masks by contrasting the current frame with
an established background model, thereby isolating dynamic
elements within the scene. Subsequently, we identify signific-
ant connected components within the background frame, thereby
initiating the process of player detection.

Following the initial detection phase, we proceed to generate
initial bounding boxes encompassing players utilizing the in-
formation gleaned from the first few frames. This serves as
a foundational step in our tracking methodology, enabling the

subsequent monitoring of player movement throughout the dur-
ation of the game. To achieve this, we leverage the robust cap-
abilities of the CSRT (Discriminative Correlation Filter with
Channel and Spatial Reliability) tracking algorithm.

The CSRT tracking mechanism operates by employing discrim-
inative correlation filters, which are adept at estimating the loc-
ation of objects and continuously tracking their trajectory over
time. This approach capitalizes on the discriminative power of
correlation filters, allowing for precise and robust object track-
ing amidst dynamic and complex scenes characteristic of tennis
matches.

Furthermore, to enhance the accuracy and reliability of player
tracking, we incorporate morphology and connected compon-
ent analysis techniques. These methods enable us to refine the
detection process, identifying regions of interest corresponding
to players with greater precision and reducing the likelihood of
false positives or erroneous identifications.

By seamlessly integrating these methodologies, our approach
to player tracking achieves a comprehensive and reliable means
of monitoring player movement throughout the entirety of the
game. This multi-stage process ensures that our system is cap-
able of accurately identifying and tracking players amidst the
dynamic and challenging environment of a tennis match, thereby
laying the groundwork for a comprehensive 3D analysis of the
game.

3.2 Implementation

The implementation of the proposed player tracking system is
realized through the utilization of OpenCV, an open-source com-



puter vision library renowned for its versatility and efficiency in
handling various image processing tasks. Leveraging the rich
suite of functions provided by OpenCV, we have seamlessly in-
tegrated the MOG2 background subtraction algorithm and the
CSRT tracking mechanism into our framework.

The initial stage of the implementation involves the applica-
tion of the MOG2 background subtraction algorithm to com-
pute foreground masks, which highlight regions of interest con-
taining dynamic elements within the scene. This is achieved
through the use of OpenCV’s MOG2 function, which efficiently
computes the foreground masks by subtracting the current frame
from an established background model.

Subsequently, we employ morphological operations and con-
nected component analysis to identify and isolate regions con-
taining players within the foreground masks. OpenCV’s mor-
phology functions are instrumental in this process, allowing for
the refinement and extraction of player regions based on pre-
defined criteria.

Following the initial detection phase, we utilize the CSRT track-
ing algorithm to continuously monitor and track the movement
of players throughout the duration of the game. OpenCV provides
native support for the CSRT tracker, enabling seamless integra-
tion of the tracking mechanism into our framework.

4. Detecting Tennis Court

4.1 Detecting Tennis Court Pixels

The first task step that we take to extract all the pixels of the
tennis court lines is to apply a mask which will remove all non-
white pixels. The reason we are looking for white pixels is
because the tennis court lines and the net line are white. Since
the pixels aren’t extirely white, a range of RGB values must
be provided to mask colors that are not close to a white color.
The mask will keep all pixels which have RGB values between
[180, 180, 100] and [255, 255, 255]. The pixels that do not fit
within this range will be set to black: [0, 0, 0]. Then the im-
age in converted into a binary image to make things simplier to
deal with. Since we are dealing with broadcast videos, this still
leaves a lot of noise in the image as white pixels can be seen in
areas other than the tennis court. The goal now is to remove the
white pixels that come from objects other than the court lines.
A safe assumption that can be made is that the tennis court is
very often in the center of the image. Due to this, we can safely
set all pixels around the border of the image to black. We want
to make this border as large as we can without risking acci-
dently cutting off some of the actual tennis court. Cutting off
10be a safe assumption that helped with reducing the noise in
the image.
A final algorithm is applied to the binary image to try to remove
the white pixels that do not appear within a line of other white
pixels. Let τh and τv represent the width of the horizontal and
vertical tennis court lines in pixels. For each white pixel, check
if the pixels h to the left and right of the given pixel is white.
Similarly, check if the pixels τv above and below the given pixel
is white. If the pixels h to the left and right or the pixels τv
above and below then we should keep the current white pixel.
However, if the pixels to the left, right, above, and below are all
white, then we should not keep the current white pixel as it is
occurring within a block of other white pixels and we are trying
to find the tennis court lines.

4.2 Finding Tennis Court Lines from White Pixels

Now that the white pixels that mostly come from the tennis
court lines and the net line have been identified, the next step is
to fit lines to each of them. In order to fit a line that each of the
white pixels belongs to, the RANSAC algorithm will be used.
RANSAC allows you to specify a residual in which the data
points are considered inliers. In order to detect the court lines,
the residual can be set to approximately the width of the ten-
nis court line in pixels. With this configuration, a single run of
RANSAC with the data points being the locations of the white
pixels in the image will result in a set of white pixels that occur
within a line and has the maximum number of inliers within the
residual offset. A line can be fit to the inliers of this particular
run of RANSAC to obtain line which corresponds to a tennis
court line or the net line in the frame.

4.3 Finding Tennis Court Keypoints from Tennis Court
Lines

With the 9 tennis court lines and 1 net line identified, the keypo-
ints can be identified by systematically finding the intersection
of lines correspond to a particular keypoint.
In order to identify what each line corresponds to on the ten-
nis court, a simple approach was taken. First, identify which of
the lines are horizontal by looking at the angle of that line. If
the angle of the line is below some threshold h, then it will be
classified as a horizontal line. Once the horizontal lines have
been identified, find the midpoint of each of the lines and sort
them by their y-coordinates. The order of the sorted horizontal
lines corresponds to the order of the lines in a tennis court:
far baseline, far service line, net line, close service line, close
baseline. The same approach can be used for the vertical lines,
which are the lines that were not labeled as horizontal. Once
the lines are sorted by the x-coordinate of their midpoints, then
you can identify them as the left doubles line, left singles line,
center service line, right singles line, and right doubles line.
One check that can be done to verify that the court detection
was done correctly is to check that there were 5 horizontal lines
detected and 5 vertical lines detected.

4.4 Calibration Using Keypoints

Now that the keypoints have been located, calibrating the cam-
era is quite straightforward. All that is required is to solve the
system of linear equations to find the matrix M which maps 3D
coordinates to the 2D pixel locations
To map out the corresponding 3D world coordinate points, the
bottom left keypoint of the tennis court can be used as the ori-
gin, [0, 0, 0]. A standard professional tennis court is 23.77
meters long and 10.97 meters wide. The world coordinates of
the top left, top right, and bottom right keypoints are therefore
[23.77, 0, 0], [23.77, 10.97, 0], and [0, 10.97, 0], respectively.
Lastly, the net line splits the court in half and has poles that have
a height of 1.07 meters are placed 0.91 meters away from their
doubles lines. This results in the top of the left pole and the top
of the right pole having world coordinates of [5.485, 0.91, 1.07]
and [5.485, 10.51, 1.07].

5. Pose Classification

5.1 introduction

In this section, we aim to discuss the impact of certain vision
models on improving the performance of neural networks. We



Figure 13. Examples of filtering out white pixels using τv and
τh

Figure 14. Top left shows input frame from broadcast video. Top
right shows white masked image with the τ filtering algorithm to
detect white pixels within court lines. Bottom right shows lines
fitted to RANSAC inliers. Bottom left shows detected keypoints

by intersecting court lines and finding the net line.

utilized the THREE DIMENSIONAL TENNIS SHOT A HUMAN
ACTION DATA SET *, which includes a wide variety of ten-
nis game movements such as different types of serve strokes,
etc., as explained in Appendix A. Initially, we applied a conven-
tional neural network model for classification tasks, the details
of which are provided in Appendix B. To examine the influ-
ence of classical methods, we applied several image processing
techniques on the inputs of this neural network to determine
whether better outputs can be achieved or not. Subsequently,
we elaborate on these classical methods.

* http://thetis.image.ece.ntua.gr/

5.2 Methods

Canny Edge Detection:

The input videos of this dataset mostly have a static background,
with a person standing in the middle of the video performing a
specific tennis movement. Therefore, the idea that comes to
mind is to eliminate any additional data that should not be fed
into the neural network (Canny, 1986). For example, the color
of the person’s clothing or the background behind the player
should not affect the network. Only the type of player move-
ment and the movement of the racket they hold are important.
Thus, we attempt to extract useful information from the video
and provide it as input to the neural network in the next step.
For this purpose, we first use Canny edge detection to find all
the edges in the images of all frames.

Canny edge detection is a popular edge detection algorithm de-
veloped by John F. Canny in 1986. It’s widely used in computer
vision for detecting a wide range of edges in images or video
frames. Let me break down the steps involved in Canny edge
detection as implemented in the code:

• Grayscale Conversion: The first step in Canny edge de-
tection is to convert the input image or frame to grayscale.
This simplifies the edge detection process by reducing the
image’s dimensionality and removing color information
that is not necessary for edge detection.

• Gaussian Blur: Before performing edge detection, the
grayscale image is often smoothed or blurred using a Gaus-
sian filter. This helps in reducing noise and unwanted de-
tails in the image, which can cause false edge detection.

• Edge Detection with Canny: Canny edge detection is
performed on the blurred grayscale image. It works by
detecting areas of significant intensity change or gradient
in the image, which typically correspond to edges. The
algorithm uses the following steps:

1. Gradient Calculation: The algorithm calculates the
gradient magnitude and direction for each pixel us-
ing image derivatives (such as Sobel operators).

2. Non-maximum Suppression: This step thins down
the detected edges to a single pixel-wide line by sup-
pressing non-maximum pixels along the edges.

3. Double Thresholding: Canny edge detection uses
two thresholds: a lower threshold (weak edge) and
a higher threshold (strong edge). Pixels with gradi-
ent magnitudes above the higher threshold are con-
sidered strong edges, while those between the two
thresholds are considered weak edges.

4. Edge Tracking by Hysteresis: Weak edges are con-
sidered as candidate edges and are traced along the
strong edges. If a weak edge is connected to a strong
edge, it is considered part of the edge. Otherwise, it
is discarded.

• Adjusting Thresholds: In the code, the Canny edge de-
tection function (cv2.Canny()) is called with threshold
values of 50 and 150. These values determine the min-
imum and maximum gradient magnitudes for detecting edges.
Adjusting these thresholds can affect the sensitivity and
specificity of edge detection.



• Output: The output of Canny edge detection is a bin-
ary image where white pixels represent detected edges and
black pixels represent non-edge regions.

At this stage, we are dealing with videos where edges are clearly
defined. In this phase, our objective is to eliminate static edges
present in all frames, as they typically represent background
elements and offer no valuable information. Hence, we filter
out background edges.

Subsequently, the resulting output comprises edges of the player
and the racket they hold, essentially encompassing edges of
any moving objects in the image. However, it also includes
noise originating from the background of the image. In this sec-
tion, our goal is to eradicate this noise and enhance the video’s
smoothness. To achieve this, we proceed as follows:

1. Edge Detection:

• Utilizing the Canny edge detector, the algorithm iden-
tifies edges within each frame of the video by detect-
ing significant intensity changes, typically represent-
ing object boundaries or transitions.

2. Noise Reduction:

• Detected edges often contain noise, attributed to factors
such as lighting variations or sensor imperfections.
To address this issue, a noise reduction step is per-
formed.

• Small contours, likely to represent noise rather than
meaningful features, are filtered out based on a min-
imum contour area threshold. Subsequently, these
contours are filled to produce a cleaner edge mask.

3. Edge Enhancement:

• Following noise reduction, the edges undergo en-
hancement to improve their visibility and robustness.
This enhancement is achieved through dilation, a mor-
phological operation that expands the boundaries of
detected edges.

4. Temporal Smoothing:

• In addition to processing individual frames independ-
ently, the method integrates temporal information from
previous frames to achieve smoother edge transitions
over time.

• For each frame, a weighted average of edges from
the current and recent frames is computed. The weight-
ing diminishes with the temporal distance from the
current frame, facilitating a gradual transition between
frames.

• This temporal smoothing effectively reduces flicker-
ing or sudden changes in the detected edges, result-
ing in a more aesthetically pleasing output.

5. Implementation:

• The methodology is implemented in Python using
the OpenCV library, a widely-used tool for computer
vision tasks.

• The functionality for edge detection, noise reduc-
tion, and temporal smoothing is encapsulated within
a class named EdgeDetector.

• A separate function named process video orches-
trates the processing of each frame in a video, utiliz-
ing an instance of the EdgeDetector class.

In summary, this approach combines conventional image pro-
cessing techniques with temporal analysis to enhance the qual-
ity and consistency of edge detection in videos. Consequently,
it finds applicability across various domains such as surveil-
lance, motion analysis, and video editing.

Figure 15. court with player and ball

6. Motion Detection

6.1 Overview

Motion detection is a fundamental concept in computer vision,
crucial for various applications like surveillance, object track-
ing, and activity recognition. Essentially, it involves identify-
ing changes in object position or appearance within a video se-
quence.

input frame result

Table 1. An example of a specific frame that, according to this
process, is transformed into input for a deep model, causing only

important information to be fed into the neural network.

6.2 Background Subtraction

6.2.1 Overview: Background subtraction is a key technique
in motion detection methodologies. It revolves around com-
paring each video frame against a background model to detect
significant changes indicative of moving objects.

6.2.2 Implementation: Background subtraction is implemen-
ted using libraries such as OpenCV. Developers create a back-
ground subtractor object with functions like
cv2.createBackgroundSubtractorMOG2(), which encapsulates
the background modeling process.

Application of this technique involves invoking methods like
fgbg.apply() for each frame in the video stream, resulting in
a binary motion mask where foreground pixels represent areas
with motion, and background pixels remain static. This binary
mask effectively delineates regions of motion within the video
frame.



6.3 Noise Reduction

6.3.1 Overview: Noise reduction is crucial for improving
image fidelity and interpretability by mitigating unwanted ar-
tifacts. In motion detection, noise can manifest as salt-and-
pepper noise, presenting as isolated white or black pixels scattered
throughout the image.

6.3.2 Implementation using Median Filtering: Overview:
Median filtering is a prominent strategy for noise reduction,
replacing pixel values with the median value of neighboring
pixels, thus reducing noise while preserving image features.

Implementation: Developers integrate functionalities from lib-
raries like OpenCV, employing operations such as cv2.medianBlur()
to apply median filtering on binary motion masks.

A critical aspect of this approach is selecting an appropriate ker-
nel size, which determines the extent of the filtering operation.
Larger kernel sizes result in more aggressive noise reduction
but may compromise object edge preservation.

By iteratively applying median filtering, isolated noise artifacts
within the binary motion mask are reduced, resulting in a cleaner
representation of motion within the video frame.

In conclusion, integrating background subtraction for motion
detection and median filtering for noise reduction forms a ro-
bust framework for extracting meaningful motion information
from video streams. Through careful parameter tuning and sys-
tematic application of these techniques, practitioners can achieve
enhanced accuracy and reliability in motion detection applica-
tions, driving progress across various domains.

7. Deep Learning Framework

7.1 Method

Our proposed approach consists of two main components that
where introduced in (Chollet, 2017): a fine-tuned CNN for spa-
tial feature extraction and an LSTM for temporal modeling. We
begin by pre-processing tennis videos and extracting 16 frames
per video at even time intervals. These frames are then fed into
a pre-trained Xception CNN model, which is fine-tuned on our
dataset to extract spatial features. The extracted features from
the CNN’s second-to-last layer are passed to the LSTM model,
which processes them as a sequence of feature vectors with a
sequence length of 16, corresponding to the frames per video.
The LSTM model consists of a dropout layer for regulariza-
tion, followed by an LSTM layer with a specified number of
hidden units. Dropout layers are inserted before and after the
LSTM layer to prevent overfitting. Finally, a TimeDistributed
dense layer with softmax activation is used to predict the action
class for each frame, and the outputs are averaged across the
sequence using a Lambda layer to obtain the final prediction.
the LSTM model flow can be seen as below:

Figure 16. This image shows the flow of data in the deep model

7.2 Experimental Evaluation
We evaluate our proposed method on a dataset consisting of
tennis serve videos captured from various angles and player po-
sitions. The dataset is divided into training, validation, and test-
ing sets, ensuring a balanced distribution of action classes. We
train the CNN model using the fine-tuning approach described
earlier and then extract features from the second-to-last layer
for all videos in the dataset. These features are used to train the
LSTM model with hyperparameters such as hidden units, dro-
pout rate, and regularization strength optimized through cross-
validation on the validation set. The trained model is evalu-
ated on the testing set using metrics such as categorical cross-
entropy loss and categorical accuracy.

8. Advertising
In the advertising segment, our concept involved streaming our
chosen advertisement live within a designated area of an im-
age. For instance, within the backdrop of a tennis court where
ads typically appear, we aimed to substitute our desired ad-
vertisement. However, this plan faced several hurdles due to
people and various objects obstructing the view, rendering con-
ventional methods ineffective. To address this, we turned to
deep learning techniques. Our solution centered around obtain-
ing the homography matrix, which transforms the perspective
view of the ground within the image into a rectangle. By utiliz-
ing the inverse of this matrix, we could integrate our rectangular
images seamlessly into the image space, creating a natural ap-
pearance for viewers watching the live game.
The primary challenge in this endeavor lies in acquiring a mat-
rix capable of seamlessly integrating the input advertisement
image onto the tennis court surface. Subsequently, we will elab-
orate on the methodologies employed.
The homography matrix facilitates a perspective transforma-
tion between two planes in space. Within computer vision,



input advertise input frame vanishing lines result frame

Table 2. Example of how the input changes after applying the computed homography matrix obtained from the vanishing line and
what the output looks like.

input frame canny edge remove static edge noise reduction

Table 3. An example of a specific frame that, according to this process, is transformed into input for a deep model, causing only
important information to be fed into the neural network.

this transformation is commonly utilized to align images of the
same scene captured from different viewpoints. The transform-
ation encompasses rotation, translation, scaling, and skewing.

court points 2D mapped points

Table 4. In this table, you can see the points that are related to
each other, from which the homography matrix is constructed.

A theoretical overview of how cv2.findHomography computes
this transformation is as follows:

• Point Correspondences: The function requires corres-
ponding points from two images, typically manually se-
lected or detected using feature matching algorithms.

• Homogeneous Coordinates: These points are represen-
ted in homogeneous coordinates, extending the Euclidean
coordinate system by adding an extra coordinate, enabling
translations through matrix multiplications.

• Homography Matrix: The objective is to find the homo-
graphy matrix H that maps points from one image to their
corresponding points in the other image. Mathematically,
for corresponding points (x, y) and (x′, y′), the relation-
ship can be represented as:

9. Homography Equationx′

y′

1

 = H ·

x
y
1


where H is a 3×3 matrix representing the transformation.

• Solving for Homography: The function employs math-
ematical techniques to solve for the elements of the homo-
graphy matrix H, often utilizing Direct Linear Transform
(DLT) algorithms.

• Robust Estimation: Real-world scenarios may present
outliers or mismatches in corresponding points due to noise
or occlusions, which can be handled using methods like
RANSAC.

• Final Homography: After robust estimation, the function
returns the homography matrix H, representing the trans-
formation between the two images.

In summary, cv2.findHomography computes the homography
matrix aligning corresponding points between images, enabling
accurate transformation and registration, even in noisy environ-
ments.
An alternative method for finding H involves determining the
vanishing line and points, allowing for the construction of the
H matrix. However, exploiting the truly vertical nature of the
middle ground’s vertical line in our specific case ensures con-
sistent results compared to the previous method.
To proceed, applying the inverse of the H matrix to any input
image, followed by scaling and translation, suffices to place it
amusingly within the original image.

References
Canny, J., 1986. A computational approach to edge detection.
IEEE Transactions on pattern analysis and machine intelli-
gence, 8(6), 679–698.

Chollet, F., 2017. Xception: Deep learning with depthwise sep-
arable convolutions.

Huang, Y., Liao, I., Chen, C., Ik, T., Peng, W., 2019. Track-
Net: A Deep Learning Network for Tracking High-speed and
Tiny Objects in Sports Applications. CoRR, abs/1907.03698.
http://arxiv.org/abs/1907.03698.

Qazi, T., Mukherjee, P., Srivastava, S., Lall, B., Chauhan,
N. R., 2015. Automated ball tracking in tennis videos. 2015
Third International Conference on Image Information Pro-
cessing (ICIIP), 236–240.



Method Performance for Different Service Poses (%) Performance for All Poses (%)
Training Validation Test Training Validation Test

Without Classic 38.9 33.3 43.1 80.6 64.6 76.5
Fine Tuning on Classic 100 56.2 54.9 100 97.9 94.1

Table 5. Merged accuracy comparison for different service poses and all poses.


